
SMART CONTRACT CODE
REVIEW AND SECURITY

ANALYSIS REPORT

Customer​: Crypto Blades
Prepared on​: 26/03/2021
Platform: Binance
Language: Solidity

info@rdauditors.com

Table of contents

Document 3

Introduction 4

Project Scope 4

Executive Summary 5

Code Quality 6

Documentation 6

Use of Dependencies 7

AS-IS overview 7

Severity Definitions 10

Audit Findings 11

Conclusion 12

Our Methodology 13

Disclaimers 15

info@rdauditors.com

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION ABOUT ITS

SYSTEMS AND INTELLECTUAL PROPERTY OF THE CUSTOMER AS WELL AS

INFORMATION ABOUT POTENTIAL VULNERABILITIES AND METHODS OF

THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN BE USED

INTERNALLY BY THE CUSTOMER OR IT CAN BE DISCLOSED PUBLICLY

AFTER ALL VULNERABILITIES ARE FIXED - UPON DECISION OF CUSTOMER.

Document

Name Smart Contract Code Review and Security Analysis
Report for Crypto Blades

Platform Binance/Solidity

File CoinToken.sol

MD5 hash BDF1187CAC09A73C9AB9B51255DC72F9

SHA256 hash
17E3FECD08BAD0ED9CFEE4EA1F5D85DAFF212A684616C
B6E0782231F60475DAA

Date 26/03/2021

info@rdauditors.com

Introduction

RD Auditors (Consultant) was contracted by Crypto Blades (Customer) to conduct a
Smart Contracts Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer`s smart contracts and its code
review conducted between March 25, 2021 – March 26, 2021.

This contract consists of 1 file.

Project Scope
The scope of the project is a smart contract.

We have scanned this smart contract for commonly known and more specific
vulnerabilities, below are those considered (the full list includes but not limited to):

• Reentrancy
• Timestamp Dependence
• Gas Limit and Loops
• DoS with (Unexpected) Throw
• DoS with Block Gas Limit
• Transaction-Ordering Dependence
• Byte array vulnerabilities
• Style guide violation
• Transfer forwards all gas
• ERC20 API violation
• Malicious libraries
• Compiler version not fixed
• Unchecked external call - Unchecked math
• Unsafe type inference
• Implicit visibility level

info@rdauditors.com

Executive Summary
According to the assessment, the customer`s solidity smart contract is
secured.

You are here

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview

section. The general overview is presented in the AS-IS section and all

issues found are located in the audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 0 very low level issues.

Code Quality

CoinToken consists of a single smart contract file.This also contains

safeMath, this is a compact and well written contract.

The library in the CoinToken is part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed

on the blockchain (only once), it is assigned a specific address and its

properties / methods can be reused many times by other contracts in the

CryptoBladesSkillToken.

The Crypto Blades has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

info@rdauditors.com

Overall, the code is well commented. Commenting can provide rich

documentation for functions, return variables and more. Use of Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

Documentation

We were given CoinToken in the form of a github link:

https://bscscan.com/address/0x154a9f9cbd3449ad22fdae23044319d6ef2a1

fab#code

The hash of those files are mentioned in the table. As mentioned, It's well

commented smart contract code, so anyone can quickly understand the

programming flow as well as complex code logic. Comments are very helpful

in understanding the overall architecture of the protocol. It also provides a

clear overview of the system components, including helpful details, like the

lifetime of the background script.

Use of Dependencies
Core code blocks are written well and systematically. No other

dependencies except safeMath.

AS-IS overview
CoinToken overview

It is a simple ERC20 token contract.

info@rdauditors.com

File And Function Level Report

Contract: Ownable

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test
Report

Conclusion Score

1 transfeOwnership Passed All Passed No Issue Passed

Contract: Pausable

Inherit: ownable

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test Report Conclusion Score
1 Pause write Passed All Passed No Issue Passed
2 unpause write Passed All Passed No Issue Passed

info@rdauditors.com

Contract: ERC20

Inherit: ERC20Basic

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test Report Conclusion Score
1 allowance write Passed All Passed No Issue Passed
2 transferFrom write Passed All Passed No Issue Passed
3 approve write Passed All Passed No Issue Passed

Contract: StandardToken

Inherit: ERC20

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test Report Conclusion Score
1 transfer write Passed All Passed No Issue Passed
2 balanceOf read Passed All Passed No Issue Passed
3 transferFrom write Passed All Passed No Issue Passed
4 approve write Passed All Passed No Issue Passed
5 allowance read Passed All Passed No Issue Passed
6 increaseApproval write Passed All Passed No Issue Passed
7 decreaseApproval write Passed All Passed No Issue Passed
8 _blackList write Passed All Passed No Issue Passed

info@rdauditors.com

Contract: PausableToken

Inherit: standardToken, Pausable

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test Report Conclusion Score
1 transfer write Passed All Passed No Issue Passed
2 transferFrom write Passed All Passed No Issue Passed
3 approve write Passed All Passed No Issue Passed
4 increaseApproval write Passed All Passed No Issue Passed
5 decreaseApproval write Passed All Passed No Issue Passed
6 blackListAddress write Passed All Passed No Issue Passed

Contract: CoinToken

Inherit: PausableToken

Observation: All passed including security check

Test Report: passed

Score: passed
Conclusion: passed

Sl. Function Type Observation Test Report Conclusion Score
1 burn write Passed All Passed No Issue Passed
2 _burn write Passed All Passed No Issue Passed
3 mint write Passed All Passed No Issue Passed

info@rdauditors.com

Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low

No very Low severity vulnerabilities were found.

info@rdauditors.com

Discussion:

1) In safeMath assert should be replaced by require.

2) The lower compiler version is a little vulnerable to some compiler oriented

bugs (like memory overlap on fixed size arrays), which are normally fixed on

later versions. so it is good to use the latest stable version to be on the safe

side.

Conclusion

We were given contract files. And we have used all possible tests based on

the given object. The contracts are written systematically . We found no

critical issues So it is good to go for production.

Since possible test cases can be unlimited and developer level

documentation (code flow diagram with function level description) not

provided, for such an extensive smart contract protocol, so we provide no

such guarantee of future outcomes. We have used all the latest static tools

and manual observations to cover maximum possible test cases to scan

everything.

Security state of reviewed contract is “secured”.

info@rdauditors.com

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While

we do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue

tickets, and generally investigate details other than the implementation.

info@rdauditors.com

Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinized by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

info@rdauditors.com

Disclaimers
RD Auditors Disclaimer

The smart contracts given for audit have been analyzed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, so the audit makes
no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While
we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a public
bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

info@rdauditors.com

info@rdauditors.com

